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Abstract. Long-tailed relation extraction is a crucial task in the infor-
mation extraction field for extracting the long-tailed, imbalanced rela-
tion between two annotated entities based on related context. Although
many works have been devoted to distinguishing valid instances from
noisy data and have achieved promising performance, such studies still
have critical defects: works based on nonhierarchical relations ignore the
correlations among the relations, and those based on hierarchical rela-
tions neglect the hierarchy of the relation structure, which is unbalanced
and causes difficulty in extracting data-poor classes. In this paper, a
novel layer-enhanced knowledge aggregation network, named LeKAN, is
presented to classify the relations between two annotated entities from
text, especially long-tailed relations, which are very common in various
corpora. Inspired by the election mechanism, we aggregate the ances-
tors of long-tailed relation classes into new relation representations to
prevent the long-tailed relations from being ignored. Specifically, we use
GraphSAGE to learn the relational knowledge from an existing knowl-
edge graph via class embedding. Moreover, we aggregate the acquired
relational knowledge into the LeKAN by layer-enhanced knowledge-
aggregating attention mechanism. Comprehensive experimental results
demonstrate that the new method yields considerable improvement over
other relation extraction methods on a large-scale benchmark dataset
with a long-tailed distribution.

Keywords: Natural language processing - Information extraction -
Long-tailed relation extraction - Knowledge-aggregation network

1 Introduction

Relation extraction (RE) is an essential task in the NLP field for extracting
the relation between two annotated entities based on the context, especially
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long-tailed, imbalanced relations, which are very common in real-world settings.
Long-tailed relations cannot be ignored because they contain rich semantic infor-
mation. However, it is extremely difficult to extract long-tailed relation classes
at the tail of the class distribution because few data is available. There are only
a few works which have attempted to dig into the problem of long-tail RE,
such as the explanation-based approach [1] and the approach utilizing external
knowledge (logic rules) [2]. These works have conducted beneficial studies on the
extraction of long-tail relations.

As an emerging technology and an effective solution to help improve the abil-
ity of machines to understand the human world, knowledge graphs (KGs) can
provide higher-quality support for quantitative information retrieval, question
answering, recommender systems, search engines, and other natural language
processing applications [3,4]. However, the construction of a large-scale knowl-
edge graph system containing massive amounts of knowledge relies on large-scale
structured training data. RE, with the purpose of extracting the relation between
two named entities based on the given context, is a fundamental task in building
large-scale KGs. It is also a crucial technique in automatic KG construction.
Using RE, we can accumulatively extract new relation facts to expand the built
KG. However, RE model performances quickly degrade when extracting long-
tailed relations because many long-tailed relations suffer from data insufficiency.
These difficulties make the extraction of long-tailed relations a very difficult
problem.

Long-tail relations cannot be ignored because they contain rich semantic cor-
relations. Moreover, long-tailed, imbalanced data is very common in reality. In
this work, we followed previous work to employ a widely used corpus, the New
York Times (NYT-10) dataset! [5], to verify the advantages of our method
in long tailed relation extraction. To have comprehensive understanding of the
long-tailed distribution in this dataset, we analyze the distribution of the rela-
tion classes in NYT-10, as shown in Fig. 1. In this figure, long-tailed relation
instances account for less than 4% of the total data, while short-headed instances
account for more than 96% of the data. Furthermore, the short-headed relation
classes account for less than 20% of the dataset, while the long-tailed relation
classes account for more than 80%. Therefore, research on long-tailed RE is sig-
nificant, and methods that can extract long-tailed relations with high accuracy
are urgently needed.

The task of extracting relations from long-tailed distribution context is very
difficult because few examples are available to train the models, leading to insuf-
ficient relation representation and poor classifier learning. Therefore, this situa-
tion motivates us to identify methods that can transfer knowledge between rela-
tions and alleviate the imbalance inherent in the hierarchical relational struc-
ture. To tackle these problems, a layer-enhanced knowledge aggregation net-
work, named LeKAN, is proposed. To transfer knowledge between relations,
the conventional method considers only the transfer of knowledge between rela-
tion instances in the same branch, e.g., /people/deceased_person/place_of death

! http:/ /iesl.cs.umass.edu/riedel /ecml/.
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Fig. 1. Proportions of instances and classes of short-headed and long-tailed relations
without NA labels in the NYT-10 dataset

and /people/deceased_person/place_of birth, while ignoring the fact that rela-
tion instances in different branches may also have similar semantics; e.g., both
/ film/ film_festival /location and /broadcast/content/location share the base-
level relation class / * /  /location. LeKAN can aggregate the relational knowl-
edge between two relations regardless of whether they are in the same branch,
and the extraction of head relations provides evidence for the prediction of long-
tailed relations. To alleviate the imbalance of the hierarchical relation structure,
we propose a tree-based adjustment strategy to build the distributed relational
representation. By pruning the long branches and extending the short branches of
the network, all relation nodes are held in the same layer. Moreover, GraphSAGE
with embedded KG information can sample the relevant information of the 1-
step and 2-step neighbor nodes, which helps alleviate the imbalance problem of
the hierarchical relation structure. Various baselines experiments were conducted
on NYT-10, which demonstrate that the proposed LeKAN achieves best results
in extracting the long-tailed relation. Furthermore, by leveraging the aggregated
rational knowledge in different branches and levels, our proposed model can
transfer relational knowledge more efficiently than existing approaches.

The remainder of the paper is organized as follows. In sect. 2, we discuss
the latest progress on the long tail problem in various fields, such as relation
extraction, computer vision, that can inspire this work. In Sect. 3, we mainly
introduce the theory and interpretability of our proposed LeKAN method. Then,
our experimental results are reported in Sect. 4. Finally, we conclude the our
work and briefly introduce the work to be done in the future in Sect. 5.

2 Related Works

Relation extraction is the cornerstone of automatic construction of large-scale
KGs. Early relation extraction mainly depends on the supervision model. Quanti-
ties of labeled data is required for relation extraction via conventional supervised
models [6,7]. Such a process of tagging large-scale raw datasets is extremely time
consuming and difficult to perform. Hence, [8] proposed the use of distant supervi-
sion (DS) to automatically annotate data. However, DS unavoidably introduces
the incorrect labeling problem. To address such an issue caused by DS, [5,9]
proposed multi-instance learning mechanisms, [10] proposed a sentence-level
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framework via negative training and [11] achieved promising performance by
adopting DS to construct extensive datasets and alleviate the noisy label prob-
lem. Recently, [12] proposed a probabilistic approach to improve the DS relation
extraction. However, these works ignored the long-tailed problem or failed to
improve the effect of long-tailed RE.

The two intuitive solutions to solve the classification problem of long-tailed
distribution are resampling [13-15] and reweighing [16,17]. The essence of these
methods is to leverage the dataset with given distribution to violently hack the
unknown distribution during the process of model training, i.e., to make change
of the point weights, strengthen the tail category learning, and offset the long-
tailed effect. Moreover, multi-instance learning [18] and transfer learning [19]
can be employed to tackle the long-tail relevance problem. These methods have
achieved good results in various computer vision tasks.

Only a few works have attempted to solve the problem of long-tailed RE
[1,2,20,21]. The studies by [1,2] treated each class in isolation. Such a way of
dealing with different classes of relations naturally ignores the rich semantic cor-
relations between the classes, which are equally important. [20] proposed a hier-
archical attention scheme for RE and achieved better performance than nonhier-
archical schemes. [21] applied transfer knowledge between instances in the verti-
cal direction (same branches) and leveraged implicit and explicit class embedding
from Knowledge Graphs and Graph Convolutional Networks (GCNs) instead of
learning hyper-parameter spaces using the data-driven mechanism, where similar
classes may have different hyper parameters; thus, they impeded the generaliza-
tion of long-tailed relations. These works conducted beneficial explorations into
the long-tailed relation extraction.

Previous solutions to address the long-tail problem have mainly focused on
entity hierarchies and the transfer of relational knowledge between instances in
the vertical direction. Unlike them, our methods leverage GraphSAGE to learn
knowledge and transfer knowledge in both vertical and horizontal directions
using a relational aggregator. To alleviate the imbalance inherent in hierarchi-
cal relation structures, we also propose a method to build a layer-enhanced
hierarchical relational tree to ensure that all relational branches have identical
heights. Compared with the existing RE methods, our models can leverage rela-
tion correlations to better classify the given long-tailed instances by transferring
knowledge from their related layers.

3 Methodology

In this section, we introduce the methodology of the layer-enhanced knowledge
attention network for RE. First, we start with the relevant definitions of RE.

3.1 Framework

We follow the general definition and notations of the knowledge graph by defining
the KG as a set of G. Furthermore, § = {&€,R,F}. The F indicates triple
fact (h,r,t) € F, the £ indicates entities predefined in KG, and R indicates
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Fig. 2. The architecture of LeKAN

relations between such entities. The facts F indicate that the class of relation
r € R between two given entities (h € £ and t € £) is . We adopt the multi-
instance learning settings and generate multiple entity-pair bags by splitting
the instances with identical entity pairs that mention h; and t; into the same
bags Sk, .t15Shs ts,...- Each instance in entity-pair bags is represented as a word
sequence s = {wy, wa, ...}.

In Fig. 2, we demonstrate the overall architecture of the LeKAN. There are
mainly four parts in LeKAN as follows.

Instance Encoder: The instance encoder aims to encode the sentence semantics
into a continuous low-dimensional vector. Designated an instance s with the
tagged entity pair, we can use the models with neural network architecture to
encode it.

Relational Knowledge Learning: Considering the pretrained KG embeddings
(e.g., TransE [22]) as nonhierarchical relational knowledge, we use GraphSage
to learn hierarchical relational knowledge from the aggregated relational KG. In
addition, we combine the GraphSAGE with generic message-passing inference,
we can acquire the relational representation for the relation classes. We concate-
nate the outputs of the GraphSAGE sampling neighbors with different steps and
the embeddings learned from knowledge graph to construct the final distributed
relational embeddings.

LKATT: Given the hierarchical relation structure of a KG, the relational knowl-
edge aggregator automatically aggregates the parent relations of the long-tailed
relation into a new relation. For example, we can aggregate two long-tailed
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relations under different branches, e.g., /film/film_festival/location and /broad-
cast/content /location, to a new relation: few_instance_location. Under the guid-
ance of layer-enhanced knowledge attention (LKATT), LeKAN aims to select the
instance with abundant information that exactly matches the relevant relation
but to ignore its branch.

3.2 Instance Encoder

Given an instance s = {wi,...,w,} containing two entities, we leverage the
instance encoder to encode the sentence into a continuous low-dimensional vec-
tor. The instance encoder consists of two parts: the embedding layer, which maps
the words in the context into vectors, and the encoder layer, which encodes the
vectors.

Embedding Layer: To better identify the synaptic and semantic meanings of the
sentences. We leverage the neural networks in embedding layer to transform
discrete words in specific instance into vector space. Here, we use a pretrained
skip-gram model [23] to map each word w; in the instance to a continuous vector
space. Moreover, we adopt position embedding following [11]. Then, we embed
the relative distances of every word in the instance from marked entities into two
dp-dimensional continuous vectors. Finally, we gather all input embeddings in
the instance and concatenate all of them together. By doing so, we get a sequence
of instance embedding, which is ready to be fed into the encoding layer.

Encoding Layer: In encoding layer, we also employ neural networks to encode the
outputs of the embedding layer, whose input is a given instance. In this study,
we employ vanilla CNNs [11] and PCNNs [24] as the instance encoder.

3.3 Distributed Relational Representation via Transfer Learning

To get distributed relational representations, we need to have pretrained KG
embeddings obtained by instanced encoder and define a predefined class rela-
tion hierarchy according to the structure of KG. Then, we build the distributed
relational representation. First, we use the nonhierarchical relational knowledge
from the KGs. Second, we build a layer-enhanced hierarchical relational tree
to learn hierarchical relational knowledge. Third, we apply GraphSAGEs with
1-step and 2-step to learn the hierarchical relational knowledge from the layer-
enhanced hierarchical relational tree, and obtain a distributed relational repre-
sentation.

Building a Layer-Enhanced Hierarchical Relational Tree. Given KG G (e.g.,
NYT) consisting base-level relations, we extract the set R of it to generate the
corresponding layer-enhanced hierarchical relational tree set RY. The relations
in high-level sets (e.g., /location) have the same instances as their child rela-
tions (e.g., /people/deceased_person), which indicates that high-level relations
are more general and common than low-level relations. The relation hierarchies



128 X. Liu et al.

are separated into tree-structured subgraphs of R?, which is the set of all rela-
tions. The generation of subgraphs can be recursively completed to obtain the
relation sets {R?, R'..., R", R'} and others. Then, we must adjust the hierarchy
relation tree to ensure that all leaf nodes have identical heights. We propose
two layer-enhanced methods to transform an imbalanced relational tree into a
balanced tree: pruning and completion. The pruning method can remove layers
from a relation branch, while the completion method can add layers to a relation
branch. For long relational branches, we can use the pruning method to reduce
their heights; for short relational branches, we can use the completion method
to increase their heights. This approach can also prevent overfitting and improve
the convergence speed of the network.

Learning Relational Knowledge via GraphSAGE. Because of the missing one-
multiple relations in KGs, GraphSAGEs are necessary that they sample 1-step
and 2-step neighbors from the hierarchical features. Given the pretrained relation
embedding vgra"SE € KGs via TransE, we use the mean aggregator to form a
hierarchical representation of the i-th label:

hE = o(W'- Mean(hi~' | Jhi™" Vu € N(v))) (1)
where Wt € qu,i = 1,2,hY = vy. The convolutional aggregator concatenates
the parent layer representation h*~! of the node with the aggregated neighbor-
hood representation h’fv(v). Finally, we concatenate the pretrained v "€ and
output vectors viG SN , viG SNz of the GraphSAGEs to form the hierarchical class
embeddings:

qr = ’UiTTanSEHUiGSNI ||U§}SN2 (2)

1 2
where ¢, € Rt T4,

3.4 LKATT

Conventional hierarchical RE models treat the top-level relation nodes as inde-
pendent nodes, which hinders the transfer of knowledge among the base-level
relational nodes of different branches and prevents the long-tailed nodes from
being selected. We design a relational aggregator to solve these problems. The
relational aggregator is guided by the following principles: 1) If two base-level
relational nodes are semantically similar, their top-level relational nodes are
aggregated. 2) Even if the basic relation nodes of two rare instances have dif-
ferent semantics, their top-level relations can be aggregated. Experiments show
that the aggregation of relation nodes can enhance the performance of classify-
ing long-tailed classes, and the decoupling of top-level relation nodes likely has
potential effects.

In general, the output layer of the neural network will learn parameters of
the specific label optimized by the given loss function. Because, the parameter
space of different classes is different, it naturally leads to the fact that long-tail
relations can be exposed to only a few training examples during training. Instead,



LeKAN: Extracting Long-tail Relations 129

our approach considers more correlations of the long-tailed relations by making
the ancestor nodes of semantically similar relation nodes share parameters and
concatenating the sentence to the corresponding class embeddings.

First, we acquire the instance embeddings {s1, sa, ..., S } using the instance
encoder with the entity pair (h,t) and the corresponding bag of instances
Shte = {51, 52, ..., Sm }. Second, we split the class embeddings into different clus-
ters according to their types (i.e., according to their levels in the layer-enhanced
hierarchical relational tree), e.g., ¢%,i € {0,1,...,L}. Third, we aggregate the
semantically similar relation nodes and adopt ¢%,i # N (we assign an another
node N as root node in the tree) as a layer-enhanced attention query vector.
Finally, we use the LKATT mechanism to process the vector to get its rela-
tion representation rj ;. For each relation r, we can build the corresponding
hierarchical chain of latent relations (7, ...,7(N =) using a layer-enhanced hier-
archical relational tree, where r(~1) is the subrelation of r*. We can calculate
the attention weight for s; € S = {s1, S2, ..., Sm } as follows:

es = tanh(Wi[sg; q']) + bs (3)

exp (e})
S exp () @

where [x1; 22] denotes the vertical concatenation of x; and xo, Wy is the weight
matrix, and by is the bias. The converged nodes share parameters. Then, we can
compute the attention scores on each layer of the layer-enhanced hierarchical
relational tree to acquire the relational representations.

ai =

7‘2,75 = ATT(Q”’i7517827"'?8m) (5)
The global representation is defined as follows:
Thy = Concat(r%t, ...,Tﬁ;l) (6)

The conditional probability is computed by the global representation ry, ;:
P(r|h,t,Shy):

P(rlh,t,Sne) = % (7)

where o contains the scores of all relations. And o is calculated via a linear layer:
0= A’I’hyt (8)

where A is the discriminative matrix.

4 Experiments

In this section, we evaluate all models using the proposed evaluation scheme. This
method evaluates the models by comparing the relational facts found in the con-
text with those in a large-scale KG, such as DBpedia, and adopts an approximate
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accuracy measure except the manual evaluation. To show the advantages of our
methods, we plot the precision-recall curves for all methods for the evaluation.
In order to validate whether the effect of our model for the long-tailed RE is
superior to other proposed methods, we follow the same evaluation criteria as
before [20,21] by reporting the Precision@N. We report the evaluation results
in Figure 3 and Figure 4. The dataset and baseline code are from GitHub?.

4.1 Experimental Setting

Datasets. We evaluate the performance of our method on the most commonly
used long-tail RE dataset in recent long-tail RE work: the NYT-10 dataset [21,
25-28]. There are 52 common classes and a NA class in it. The NA relation
denotes that the relation between the given instances is not labeled. The dataset
contains rich semantic information, which has been split into a training set with
522611 sentences and a testing set with 17448 sentences. There are 281270 entity
pairs and 18252 relational facts in the training set and 96678 entity pairs and
1950 relational facts in the testing set. We follow the convention of truncating
sentences that contain more than 120 words into 120 words for the dataset.
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Fig. 3. P-R curves for various models

Comparison Models. For the baseline model comparison, we utilize both
neural network models and feature-based models. We report the evaluation
results of the neural networks with methods based on various attention schemes:
+LKATT is our layer-enhanced knowledge-aggregating attention method;
+ONE is a typical multi instance learning based neural model [24]. The soft
label is the model with attention schemes using the soft-labeling method to alle-
viate the effects of the noise problem [27]. In addition, we compare our model

2 https://github.com/thunlp/OpenNRE
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Fig. 4. P-R curves for various models with attention mechanism

with various feature-based models, including MIML, MultiR [9], and Mintz
[8] [29]. To effectively evaluate the effect of our method on the long-tailed RE
task, we also compare it with HATT [20] and KATT [21].

Hyperparameter Settings and Reproducibility. In order to prove that our
model is superior to other baseline models and fairly compare its performance
with that of baseline methods, we keep almost all experimental parameters iden-
tical to the previous work and pretrain the sentence encoder of the neural net-
works [25]. During the training process, a dropout layer is adopted before the
output layer to prevent overfitting.

4.2 Overview of the Evaluation Results

As shown in Figs.3 and 4, our method using a novel denoising scheme and
additional auxiliary information achieved the best performance. The results also
demonstrate that LeKAN can leverage the rich correlation between relations to
improve its RE performance. We anticipate to enhance the performance of our
model by integrating some novel mechanisms such as meta-learning.

To prove the advantages and performance improvement of the proposed
methods for long-tail relation RE, we follow the convention to extract subsets
of the test dataset, where the training instances of all relations are less than 100
and 200. We use the Hits@QK metric to evaluate the long-tail RE. Then, the RE
models will recommend the relations in the first K candidate classes for each
entity pair. Since extracting long-tail relations is extremely difficult in existing
models, we choose K from the set {10, 15, 20}. We report the macroaverage
accuracy of Hits@QK for all subsets. The results shown in Table 1 demonstrate
that our new method is outperforms the attention mechanism based methods,
even the most sophisticated HATT and KATT. Although our LKATT method
achieves better results than the ordinary ATT, HATT, and KATT methods on
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long-tail relations, the results show that the current achievements in long-tail RE
remain unsatisfactory. Thus, the RE model may require additional information.
We will explore further in our future work.

Table 1. Accuracies (%) in terms of Hits@K on long-tail classes

Number of training instances | <100 <200
Hits@K(Macro) 10 |15 |20 |10 |15 |20
CNN | +ATT <5.0|<5.0|18.5 | <5.0/16.2 | 33.3
+HATT 5.6 |31.5 |57.4 227 |43.9 |65.1
+KATT 9.1 |41.3 |58.5 [23.3 |44.1 654
+LKATT 16.7 | 55.6 | 77.7|31.8 | 63.6 | 81.8
PCNN | +ATT <5.0|7.4 ]40.7 |17.2 |24.2 |51.5
+HATT 29.6 |51.9 |61.1 [41.4 |60.6 |68.2
+KATT 35.3 |62.4 | 65.1 |43.2 |61.3 1 69.2
+LKATT 29.6 |61.1 |77.8 42.4 1 68.2|81.8

4.3 Ablation Study

To have a comprehensive understanding of the contributions and impact of differ-
ent techniques in the proposed method, we design ablation tests. We demonstrate
the evaluation results of ablation study in Table 2. +LKATT is the proposed
method; w/o aggregation is the method where node aggregation is not imple-
mented; w/o KG is the method where the nodes are initialized with random
embeddings, so it is natural that there is no relational knowledge obtained from
KGs; and w/o GraphSage is the method without GraphSage, which denotes
no structured relational knowledge. By analyzing the results in Table 2, we can
draw the conclusion that the performance of our method to extract long-tailed
relations is slightly degraded without KG, and the performance is significantly
degraded after node aggregation or GraphSage is removed. This degradation is
reasonable because GraphSAGESs consider the distances between neighbors, and
node aggregation can prevent relation classes with few examples in the training
set from being ignored.

Table 2. Accuracies (%) in terms of HitsQK on relations with fewer than 100/200
training instances

Number of training instances | <100 <200

Hits@QK (Macro) 10 |15 |20 |10 |15 |20
+LKATT 29.6|61.1 | 78.8 42.4 | 68.2 | 81.8
w/o/ hier 16.7 |44.4 |44.4 | 31.8 |54.5 | 54.5
w/o Aggregation 5.6 |44.4 |50.0 22.7 |54.5 |59.1
w/o/ KG 24.1 |33.3 |72.2 1379 |45.6 |77.3
w/o/ GraphSage 18.5 |44.4 |72.2 |33.3 |54.5 |77.3




LeKAN: Extracting Long-tail Relations 133

4.4 Visualization of Class Embeddings
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Fig. 5. Dimension reduction visualization of relation class embedding

Here, we demonstrate the rationality of our class embedding work through a visu-
alization tool t-SNE [30]. This visualization work on relation embedding deeply
shows how KG and GraphSAGE embeddings positively affect the extraction of
long tail relations. In Fig. 5, the square points represent the top-level relations
of the relation clusters. Figure 5(a) demonstrates that the GCN combines rela-
tions that are under the same branch and ignores semantically similar relations
on different branches; Fig. 5(b) and Fig. 5(c) show that GraphSAGE can help
with knowledge transfer between semantically similar long-tailed relations by
aggregating the corresponding knowledge. However, if there is no KG, outliers
will occur; Fig. 5(d) shows that the long-tailed relation can be emphasized by
aggregating the ancestral relation nodes with few instances to a new relation,
which helps to aggregate the ancestral nodes with fewer instances to prevent the
corresponding base-level relation from being ignored. However, when we embed
the features of ancestral relation nodes into a high-dimensional continuous vector
space, the classification of long-tailed relations relies more on the representations
of the base-level relations, which is a problem. In the near future, we will tackle
this issue by integrating more information, for instance, relation information, or
by decoupling the relations with fewer semantic correlations than other relations
from their branches.
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5 Conclusion

We propose a novel KG- and GraphSAGE-based layer-enhanced knowledge
aggregation network to identify the classes of relations between two given enti-
ties from a corpus with imbalanced class distribution. This method leverages the
relational knowledge from relations at the head of their distribution and uses
semantically similar relational instances in different branches to boost the per-
formance of the low-resource RE. Compared to previous works, the new method
achieves significant improvements according to evaluations on a large-scale RE
dataset. Although we have made a breakthrough in long tail relation extraction,
there are still many problems waiting to be solved in the field of construction
of the knowledge graph and information extraction. Be aware of these facts, we
decided to conduct exploration in the following areas of long-tailed information
extraction.: (1) We will evaluate the effect of GraphSAGE on RE tasks across
knowledge graphs. (2) We will explore the effect of a more complex short-headed
relation decoupling and long-tailed relation aggregation scheme on RE tasks.
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